
1.  Introduction
As powerful and deep tropical low-pressure systems, hurricane formation is always associated with cloud 
systems and precipitation, which is of large uncertainties caused by models' inability to correctly represent 
complex physical processes (Errico et al., 2007; Li et al., 2016). Therefore, hurricane forecast relies not only 
on a well-defined analysis of the environmental field in the clear sky area but also on providing an accurate 
initial field in the cloudy sky area. In addition to conventional observations, non-conventional observations 

Abstract  The cloud liquid/ice water path (LWP/IWP) can provide valuable information about the 
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Advanced Baseline Imager (ABI) on the new generation geostationary environmental satellites (GOES-R 
series) in numerical weather prediction (NWP). To extend the GSI's capability to assimilate LWP and IWP 
products, a pair of new observation operators of LWP and IWP is developed to avoid the requirement 
for hydrometeor control variables. The new observation operators enable the direct use of hydrometeor 
background information from the NWP model and allow the vertical propagation of the water vapor 
increment according to the Jacobian distributions for the new LWP and IWP operators. The new LWP 
and IWP observation operators are evaluated by the single observation tests and the cycling assimilation 
and forecast experiments of Hurricane Irma (2017) and Hurricane Maria (2017). The results from single 
observation tests show that the assimilations of pseudo-LWP and pseudo-IWP can achieve positive water 
vapor increments, which also spread vertically according to the Jacobian distributions. The impact studies 
on two hurricanes demonstrate that the ABI LWP and IWP measurements can be successfully assimilated 
into the NWP model by the new observation operators, which enhances the water vapor analysis and 
further improves other atmospheric state variables in the forecast fields. The improved environmental 
fields lead to the overall forecast improvement for the two hurricanes, with the most notable track 
improvement.

Plain Language Summary  Satellite data from the advanced baseline imager (ABI) onboard 
the new generation of the geostationary operational environmental satellite (GOES-R Series) can 
provide a large amount of valuable observation information under cloudy regions for numerical weather 
prediction (NWP). To make effective use of these observations, satellite-derived hydrometeor information, 
such as the cloud liquid water path (LWP) and cloud ice water path (IWP), can improve the forecasts. 
To effectively use the cloud information in NWP, a pair of new operators has been developed to use the 
hydrometeors (e.g., cloud, rain, ice) by assuming that the portion of each water species keeps the same as 
the background fields. The new operator can successfully assimilate the cloud products, enabling better 
use of moisture information in NWP from satellite measurements in cloudy regions. Hurricane Irma 
(2017) and Hurricane Maria (2017) studies demonstrate that track forecasts are improved by assimilating 
cloud products with the new operators.
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(e.g., radar and satellite) provide a wealth of multi-source observations for improving hurricane analysis 
under the cloudy skies.

The ongoing development of data assimilation methods allows scientists to conduct direct assimilation 
of satellite radiance data in cloudy areas to improve hurricane forecasts (e.g., Otkin,  2010,  2012; Yang 
et al., 2017; Zhu et al., 2016). For microwave sounder (MW) radiances, for example, the Hurricane Weather 
Research and Forecasting (HWRF) Model is updated to assimilate the all-sky radiances from the Advanced 
Technology Microwave Sounder (ATMS) by adding total condensate as a control variable and six hydro-
meteors as state variables (T. C. Wu et al., 2019). An empirical flow-dependent adaptive observation error 
inflation (AOEI) method and an adaptive background error inflation (ABEI) method within an ensemble 
Kalman filter are proposed for assimilating all-sky satellite brightness temperatures from the Advanced 
Baseline Imager (ABI) onboard GOES-16 (Minamide & Zhang, 2017, 2019). However, direct assimilation 
of cloudy infrared (IR) radiances is still challenging due to the nonlinearity of moist processes, the un-
certainties of cloud microphysical variables, the uncertainties in radiative transfer models, and the mis-
match in magnitude and location between the cloud observations and simulations (Geer et al., 2017; Kostka 
et al., 2014; Kurzrock et al., 2018; Li et al., 2016, 2017). Some alternative approaches are being proposed to 
assimilate the cloudy IR radiance. For example, the optimal cloud-clearing method is proposed to assimilate 
the cloud-cleared radiances to improve the hurricane forecast (Li et al., 2005; Wang et al. 2015, 2017).

To better initialize the hydrometeor variables in the numerical weather prediction (NWP) model, the as-
similation of satellite cloud retrievals associated with model hydrometeors provides another alternative 
approach. It is more resource-friendly to assimilate the retrieved cloud products because the observation 
operators (maps the space of state variables into the space of observed state variables) for assimilating 
retrievals are more straightforward when compared with radiance assimilation (Migliorini, 2012). Efforts 
have been and are still being invested in deriving cloud properties from the satellite radiances. These cloud 
properties include cloud optical depth (COD) and cloud particle size (CPS), as well as liquid water path 
(LWP) and ice water path (IWP), both of which are derived from COD and CPS (Andi et al., 2013; Minnis 
et al., 2008, 2011; Walther et al., 2013; Walther & Heidinger, 2012). Among them, LWP and IWP, which are 
directly associated with the hydrometeors in the model, are assimilated in various ways to improve the ini-
tial hydrometeor fields of NWP. For example, the LWP and IWP from the Langley Research Center (LaRC) 
at National Aeronautics and Space Administration (NASA) (Minnis, 2007; Minnis et al., 2008) have been 
assimilated via different kinds of assimilation methods, including three-dimensional variational (3DVar), 
Ensemble Kalman filtering (EnKF), and hybrid method (Chen et al., 2015, 2016; Jones et al, 2013, 2015; 
Meng et al., 2019). Besides, T. C. Wu et al. (2016) have made beneficial attempts at developing the observa-
tion operators for integrated solid–water content (SWC) and liquid–water content (LWC) to assimilate the 
Tropical Rainfall Measuring Mission (TRMM)/GPM hydrometeor retrievals into the GSI data assimilation 
system specifically for hurricanes.

The ABI (Schmit et al., 2005, 2017) is a multi-channel passive imaging radiometer onboard the new gen-
eration of Geostationary Operational Environmental Satellite (R-Series) designed to observe the Western 
Hemisphere and provide various area imagery and radiometric information. ABI measures atmospheric 
or surface radiances in a total of 16 different spectral bands, including two visible (VIS) channels, four 
near-infrared (NIR) channels, and ten infrared (IR) channels with a minimum spatial resolution of 0.5 km. 
It observes the full disk every 10 min (mode 6), the continental United States (CONUS) every 5 min, and 
the mesoscale regions every 30 s. Compared with the previous generation of the GOES (8–15) imager, the 
spatial resolution and temporal resolution of the ABI are improved dramatically, benefiting the accuracy 
of the derived products (Goodman et al., 2020). The LWP and IWP, retrieved from the VIS band (channel 
2) and the NIR band (channel 6), represent the amount of cloud water and cloud ice integrated from the 
surface to the top of the atmosphere. Compared with cloud products derived from other satellites or instru-
ments, the LWP and IWP derived by ABI have a higher spatial resolution, with a spatial resolution of up to 
2 km. Higher temporal and spatial resolutions provide more valuable information for NWP, especially for 
small-scale clouds.

The variational assimilation of LWP and IWP products highly relies on the hydrometeor control variables. It 
is relatively straight forward to test the hydrometeors impacts with the established LWP and IWP operators 
within the data assimilation systems that contain the hydrometeors control variable, such as the Weather 
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Research and Forecasting (WRF) model's Data Assimilation System (WRFDA) (Chen et al.,  2015, 2016; 
Jones et al., 2013, 2015). Unfortunately, there is a lack of hydrometeors control variables in some of the data 
assimilation systems, for example, the Gridpoint Statistical Interpolation (GSI) system, which is an opera-
tion-based assimilation system. GSI has a good capability to assimilate varieties of satellite observations and 
is widely used in operational center (e.g., Kleist et al., 2009; Zhu et al., 2016) and research community (e.g., 
Lee et al., 2019; Wang et al., 2015; Wu & Zupanski, 2017). The observation operators for integrated SWC and 
LWC in GSI system were developed by T. C. Wu et al. (2016). The observation operators are built based on 
the assumption that super-saturated water vapor will condense out immediately. Hydrometeor control vari-
ables are then not required since the assumption only depends on temperature, specific humidity, and pres-
sure. The hydrometeors species in the background are calculated by an empirical formula instead of being 
diagnosed by the microphysical parameterization scheme. However, as pointed out by T. C. Wu et al. (2016), 
a portion of supersaturated water vapor used in the SWC&LWC operator has been condensed by the model 
microphysics and/or cumulus parameters. Thus, the simulated background of hydrometeors may have a 
negative bias. The SWC and LWC operators are further improved by using the hydrometeor species esti-
mated from the HWRF microphysics directly and including total cloud condensate (CWM) as a control 
variable (Wu & Zupanski, 2017). In their study, the individual hydrometeors are diagnosed from CWM and 
the partition parameters that include the fraction of ice (F_ICE), the fraction of rain (F_RAIN), and values 
of riming rate (F_RIMEF). But these variables only exist in the Nonhydrostatic Mesoscale Model (NMM) 
core of the Weather Research and Forecasting (WRF), which cannot be found in the Advanced Research 
WRF (WRF-ARW) model.

Since the output of the WRF-ARW model contains the hydrometeor variables [including liquid water mix-
ing ratio ( cloudQ ), ice water mixing ratio ( iceQ ), rainwater mixing ratio ( rainQ ), snow water mixing ratio( snowQ ),  
and graupel mixing ratio ( graupQ )] by the diagnostics from microphysical parameterization, it is better to 
define the cloud-related operators using the hydrometeor variables directly. Two issues need to be addressed 
to achieve this goal: (1) How to relate the hydrometeor variables to the water vapor, which is the control var-
iable of the GSI; (2) How to distribute the LWP and IWP vertically in each model grid since the observation 
only provides the column-integrated water and ice in the horizontal atmosphere. Similar works have been 
conducted in Yucel et al. (2002, 2003) where they assimilated the high-resolution remotely sensed cloud 
cover into the Regional Atmospheric Modeling System (RAMS) and the fifth-generation Pennsylvania State 
University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). In their 
studies, RAMS and MM5 are assumed to correctly characterize the relative proportions of different cloud 
species but not necessarily the total amount of cloud water/ice. The direct replacement or nudging assim-
ilation technique is applied in their studies to update the cloud microphysics. In this study, new LWP and 
IWP observation operators have been developed based on the same assumption that the WRF-ARW model 
correctly characterize the relative vertical position of each water species and the relative proportions of each 
water species in a variational assimilation method. Thus, the ratio of each water species to its sum at the 
3D grid point is directly obtained from the NWP model and remains constant during the iterative process.

The structure of this paper is organized as follows: Section 2 describes the cloud products derived from ABI 
radiance measurements. Section 3 explains in details the methodology for the new LWP and IWP observa-
tion operators. The validation of the LWP and IWP observation operators is presented in Section 4. Section 5 
presents the ABI LWP and IWP data impacts on the analysis and forecasts for two typical hurricane cases. 
A summary is given in Section 6.

2.  Hurricane Cases and ABI LWP and IWP Data
Two hurricanes cases The daytime cloud optical and microphysical properties (DCOMP) algorithm from the 
GOES-R series Algorithm Working Group (AWG) generates the daytime cloud products from the imagery 
taken by the ABI onboard GOES-16/-17 (Walther et al., 2013; Walther & Heidinger, 2012) for every pixel 
classified as cloudy. Only daytime pixels are considered because VIS and NIR channels are simultaneously 
used in the microphysical property retrievals. The “daytime” pixels are defined by the solar zenith angle 
less than or equal to 65°. The cloud masks provided by the ABI Cloud Mask (ACM) algorithm are used to 
determine the cloudy or cloud-free pixel. Besides, the cloud top pressure and cloud phase (CP) from other 
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ABI/GOES-R retrievals are also required. Details on the DCOMP algorithm can be found in the DCOMP 
Algorithm Theoretical Basis Document (ATBD; Andi et al., 2013).

The microphysical properties include COD, CPS, LWP, and IWP, among others. The LWP and IWP, retrieved 
from the VIS band (channel 2) and the NIR band (channel 6), represent the amount of cloud water and 
cloud ice integrated from the surface to the top of the atmosphere. There are 5424 scan lines for ABI VIS 
and NIR bands, each of which has 5424 pixels. The LWP and IWP are stored at each pixel with spatial and 
temporal resolutions of 2 km at nadir and 30 min, respectively. Each cloud pixel is identified as either an ice 
phase or a liquid phase based on the CP look-up table (LUT; Michael et al., 2010). The cloud information 
reflected by LWP and IWP is different. The COD at the VIS wavelengths can be converted to IWP for opti-
cally thin clouds, which are mostly non-precipitating (Ebert & Curry, 1992; Lin & Rossow, 1996; Wang & 
Sassen, 2002). With both VIS and NIR radiance measurements, the COD and the CPS in the radius are first 
retrieved, and further leads to the LWP retrieval for boundary layer clouds (Bennartz et al., 2007) that are 
likely both precipitating and non-precipitating. The different observation information responds to different 
observation operators, which will be described in detail in Section 3.2.

The ABI cloud products (unit: kg/m2) are compared with the Global Geostationary Gridded Cloud (G3C) 
products from the NASA Langley Cloud and Radiation Research Group (Minnis, 2007; Minnis et al., 2008) 
for a qualitative check. The G3C products also include LWP and IWP (unit: kg/m2), which can be used as 
references for ABI cloud products. The hourly available G3C products are averaged on a uniform grid of 
0.25°latitude by 0.3125°longitude. The maps of both ABI-derived cloud products and G3C products are 
shown in Figure  1. The spatial distributions of the LWP and IWP measurements from ABI are similar 
to those from G3C. The IWP from both G3C products (Figure 1a) and ABI-derived products (Figure 1b) 
capture the main structural characteristics of the hurricane spiral bands. Whereas the LWP data from G3C 
(Figure 1c) and ABI (Figure 1d) primarily provide cloud observations in environmental fields. For both the 
ABI and G3C derived products, the magnitude of IWP is larger than the magnitude of LWP since high ice 
clouds always dominate the strong convective weather phenomena, such as in the hurricane area. Besides, 
there is more detailed information from the ABI-derived LWP and IWP data due to the higher horizontal 
resolution, which should benefit the NWP model initialization.

3.  Methodology for Assimilating ABI-Derived LWP and IWP
Since the hydrometeors are not included in control variables in the current GSI system (GSI v3.7; W. S. Wu 
et al., 2002), it is crucial to obtain the proxy of hydrometeor species and to update the proxy during the as-
similation process. The LWP and IWP observation operators can then be derived based on the hydrometeor 
proxy. Besides, due to the LWP and IWP only provides information on the horizontal cloud observations, a 
method is needed to define the vertical propagation of the cloud information to the model.

3.1.  The Proxies for Background Hydrometeor Species

The relationship needs to be established between hydrometeors and vQ , that is, vQ  is used as a proxy for 
hydrometeors. In this study, the WRF-ARW output, which is used as the background fields for GSI, contains 
all needed water species such as vQ , cloudQ , iceQ , rainQ , snowQ , and graupQ , which represent the mass mixing 
ratios over dry air (unit: kg/kg). Inspired by the strategies of updating model cloud microphysical based on 
satellite images (Yucel et al. 2002, 2003), it is assumed that the models correctly calculate the partitions of 
different water species at each model grid point, even though their magnitudes may be incorrect. The pro-
portion of each water species at each grid point in the model is assumed to be constant during the iterations. 
The total water vapor ( tQ ) at each grid point, representing the sum of all water species, is calculated first 
from the background field based on the following equation:
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Recall that k
vQ  is one of the control variables in GSI (W. S. Wu et al., 2002), which can be updated during the 

iteration. To obtain k
tQ , the ratio between k

vQ  and k
tQ  at each grid in the model field needs to be calculated, 

and remains constant during the iteration,
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Simultaneously, the ratios between hydrometeor species hydroQ  and tQ  at each grid in the background field 
are also calculated before the iteration and remains unchanged during the iteration,
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Figure 1.  The distribution of (a), (b) Ice Water Path (IWP) and (c), (d) Liquid Water Path (LWP) for (a), (c) G3C, and (b), (d) ABI-derived cloud products at 
1800 UTC 06 September 2017 during Hurricane Irma (2017). The unit is g/m2 for both LWP and IWP.
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It can be seen from Equation 4 that k
hydroQ  can only be obtained when the k

hydroR  is larger than 0. In other 
words, LWP and IWP can only be assimilated where both the background and the observation are defined 
as cloudy. In this way, even though the current data assimilation system does not contain the hydrometeor 
control variables, it is possible to obtain the hydrometeor proxies in the iterative process under the assump-
tion of unchanged water species partition ratios. These hydrometeor proxies can be used to construct the 
corresponding observation operators during the subsequent assimilation process.

3.2.  LWP and IWP Observation Operators

As discussed in Section 2.2, the ABI-derived IWP represents the non-precipitating cloud, while the ABI-de-
rived LWP contains both precipitating and non-precipitating information. Therefore, the variables chosen 
for the LWP and IWP operators may differ from each other. In the WRF-ARW model, the non-precipitable 
and precipitable clouds can be represented by lower-level hydrometeors, that is, cloudQ  and rainQ , respective-
ly, while the non-precipitating ice cloud can be represented by higher-level hydrometeors, that is, iceQ  (Hong 
& Lim, 2006). LWP and IWP measurements reflect the column-integrated water and ice in the atmosphere, 
respectively, which represents the vertical cumulative sum of liquid water cloud and ice water cloud. The 
LWP and IWP observation operators should be constructed in the same way, integrating the simulated 
liquid and ice-phase clouds in the whole atmosphere, respectively. Similar construction schemes can be 
found in previous studies (Chen et al., 2015, 2016; Jones et al., 2013, 2015; Wu & Zupanski, 2017). Thus, the 
observation operators for LWP ( liquidH ) and IWP ( iceH ) from GOES-16 series ABI cloud products are
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where k
liquidQ  (unit: kg/kg) is the sum of k

cloudQ  and k
rainQ  and k

iceQ  (unit: kg/kg) denotes the non-precipitating 
ice cloud. k

liquidR  and k
iceR  are the ratios between liquid/ice water and k

tQ  at the thk  level and are calculated 
for k

liquidQ  and k
iceQ , respectively, maxk  is the index for the model top level.  Δ unit : hPakP  is the pressure 

gradient between levels k  and  1k  (   1maxk k ), and  2unit :m /g s  denotes to the acceleration due to 

gravity. It should be noted that the complicated microphysical processes involved in hydrometeors conden-
sation have been considered in detail by the microphysics parameterization and cumulus parameterization 
scheme, including the special situation such as supercooled water, where ice and liquid clouds coexist. 
Therefore, the liquidH  and iceH  are calculated by integrating the hydrometeor proxies into the whole levels to 
ensure consistency with the model field.

Besides, the derivatives of the operators with respect to vQ  (often referred to as Jacobians) are also calculated
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The Jacobians of liquidH  and iceH  quantifies the sensitivities of the hydrometers to vQ . Equation 6 shows that 
the Jacobians of the LWP and IWP observation operators are related to the ratios of water species in the 
model fields and the variation in pressure. Furthermore, the Jacobians also define how the increments of 
LWP and IWP assimilation with the new LWP and IWP observation operators propagate vertically, that is, 
according to the ratios between hydrometeors and water vapor at the corresponding vertical levels.
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4.  Analysis and Test of New LWP and IWP Operators
4.1.  Jacobians for the New LWP and IWP Operators

Three analysis fields are used to show the Jacobian distributions for the new LWP and IWP operators. It is 
shown in Equation 6 that the final form of Jacobians consists of two parts: (1) the ratios between the hydro-

meteors and water vapor and (2) the pressure gradient term 
Δ kP

g
. The patterns of the vertical distributions 

of water vapor and the ratios (Figure 2a) are similar among the three analysis times. The water vapor con-
tent gradually decreases as altitude increases. In the lower and middle troposphere, the ratios of the liquid 
cloud to water vapor are small, while the ratios between ice clouds and water vapor increase due to the de-
crease in water vapor in the higher altitudes. In general, the patterns of ratios are relatively stable over this 
period. However, the Jacobians (Figure 2b) show different vertical distribution characteristics, especially for 
the IWP. From 1800 UTC 06 to 1800 UTC 08 September, the magnitude of Jacobians gradually increases, 
which is related to the pressure variation of Hurricane Irma (2017). The pressure gradients in the vertical 
layers are enhanced, which in turn contributes to the magnitude changes of the Jacobians.

Additionally, the Jacobian vertical distributions also show the sensitivity of the new LWP and IWP observa-
tion operators to water vapor. The new LWP operator reveals high sensitivity of LWP to water vapor in the 
lower layers, while the new IWP operator reveals high sensitivity of IWP to water vapor in the middle and 
upper troposphere. That means although the observations of LWP and IWP from ABI are the column inte-
gration of the cloud, the increments in the assimilation of LWP and IWP would propagate to water vapor 
vertically according to the corresponding Jacobians, respectively.

4.2.  Single Observation Tests

To validate the new LWP and IWP observation operators, a set of single observation tests is conducted. The 
background fields used for the single observation tests are from 1800 UTC 6 September 2017, which were 
generated from a 6-h WRF forecast. A pseudo-LWP observation and a pseudo-IWP observation are placed 
at the hurricane center (17.5°N, 66°W) with the innovations (observation minus background) of 1000 g/m2, 
respectively. The observation errors are assigned to 500 g/m2 for both LWP and IWP for assimilation. The 
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Figure 2.  (a) The vertical distribution of water vapor (dash dotted lines), and the ratios between liquid (dash lines)/ice 
(solid lines) cloud and water vapor. (b) The vertical distribution of the Jacobians functions for the LWP (dash lines) and 
IWP (solid lines). The results are for 1800 UTC 06 September (blue lines), 1800 UTC 07 September (green lines), and 
1800 UTC 08 September (red lines) averaged over the hurricane core area.
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new LWP and IWP operators use specific humidity as the control variable. Figure 3 shows the increments of 
water vapor in the analysis fields (unit: kg/kg). The positive water vapor increments are observed at around 
700 and 400 hPa with respect to the assimilation of pseudo-LWP (Figure 3a) and pseudo-IWP (Figure 3b). 
The increment of water vapor is stronger with the assimilation of the pseudo-IWP data than the increment 
of water vapor with the assimilation of the pseudo-LWP data. This is because the magnitude of the Jaco-
bians for IWP in the new LWP & IWP operators is larger than that of the Jacobians for LWP. Cross section 
along the line from A point to B point shows that the increment from the assimilation of pseudo-IWP occurs 
mainly in the upper level with a center at around 350 hPa, while the increment from the assimilation of 
pseudo-LWP is concentrated below 500 hPa with a center at around 700 hPa. The vertical propagation of the 
water vapor increment results from the Jacobian changes in the vertical direction.

5.  Impacts of the New LWP and IWP Operators on Hurricane Forecast
Continuous cycling data assimilation and forecast experiments for Hurricane Irma (2017) and Hurricane 
Maria (2017) are carried out to evaluate the impact of the new LWP and IWP operators on the hurricane 
cases.
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Figure 3.  The increments of water vapor (unit: kg/kg) at (a) 700 and (b) 300 hPa after assimilating single pseudo-LWP 
and pseudo-IWP, respectively. Their cross sections along the line from A point to B point are presented in (c) and (d), 
respectively.
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5.1.  Models and Experimental Design

The Developmental Testbed Center (DTC; Bernardet et al., 2008) GSI version 3.7 is used as the data assim-
ilation system with the WRF-ARW as the NWP model. The GSI three-dimensional variational data assimi-
lation (3DVar) method is used with a homogeneous background covariance matrix (W. S. Wu et al., 2002). 
Control variables include stream function, velocity potential, pressure, and a humidity variable (specific or 
relative humidity). The background error covariance comes from the North American Mesoscale Forecast 
System (NAM) regional model. The new LWP and IWP operators have been implemented in the GSI sys-
tem. The National Centers for Environmental Prediction (NCEP) FNL (Final) operational global analysis 
(0.25°×0.25°) are used as the initial and boundary fields. The nested domain is used in Lambert Projection 
with the corresponding horizontal grid spacing as 27 and 9 km, respectively. There are 250 × 200 grid points 
in the outside domain (D01) and 481 × 400 grid points in the inner domain (D02) with the central latitude 
and longitude at (22°N,77°W) (Figure 4a). The model is configured with 51 vertical levels and a 50 hPa mod-
el top. Besides, the sea level temperature (SST) dataset comes from the FNL dataset. It should be noted that 
moving nested domain is used as efficient forecasting tools for hurricane predictions, especially valuable 
for the characterization of hurricane structures (Biswas et al., 2014; Li et al., 2020; Tong et al., 2018). This 
study focuses on testing the effectiveness of the LWP and IWP observation operators instead of hurricane 
refinement structure diagnosis. Therefore, a larger fixed domain (D02) is needed to cover the tracks of both 
hurricanes, provide a better environmental field for hurricane simulations, and enable more LWP and IWP 
observations to be assimilated. Based on the above considerations, 27 km nested with 9 km domains are 
chosen by referring to HWRF horizontal grids setup but without the third layer moving domain used.

Since the new LWP and IWP operators are constructed by using the hydrometeors directly, it is sensitive to 
the choice of microphysics scheme. To select an optimal microphysical parameterization scheme for LWP 
and IWP assimilation, several microphysics schemes are selected to test the sensitivity of the new LWP 
and IWP operators, including WRF Single-Moment 6-Class Microphysics Scheme (WSM6), the WRF Dou-
ble Moment 6-class (WDM6) scheme, Lin scheme, Thompson scheme, Morrison double-moment scheme. 
Kain-Fritsch scheme (KF) is adopted as cumulus parameterization scheme. Sensitivity experiments are 
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Figure 4.  (a) The 27/9-km nested domains for data assimilation and forecast experiments. (b) The distribution of conventional observations in D01 assimilated 
in this study valid at 1800 UTC 06 September 2017.
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evaluated based on three LWP and IWP assimilation and forecast results, beginning at 1800 UTC 5 Septem-
ber 1800 UTC 6 September, and 1800 UTC 7 September 2017, respectively, with background fields from 6 h 
forecast fields after the 1200 UTC cold start for each day. Overall, the average track errors and intensity er-
rors (not shown) show that the WSM6 parameterization scheme has the smallest errors in all experiments. 
Therefore, WSM6 and KF are adopted as the microphysics scheme and cumulus parameterization scheme, 
respectively. Other parameterizations include the Yonsei University boundary layer scheme (YSU; Hong 
et  al.,  2006), the Dudhia shortwave radiation scheme (Dudhia,  1989), and the Rapid Radiative Transfer 
Model (RRTM) longwave radiation scheme (Mlawer et al., 1997).

Two experiments are conducted to examine the performance of the new LWP and IWP observation opera-
tors. The first one is the control experiment (hereafter CNTL) using the released version of GSI without any 
modifications, which is only assimilating the conventional observations from radiosondes, ships, aircraft 
reports, satellite-derived winds, surface synoptic observations, and airport reports for both D01 and D02 
(Figure 4b). As a comparison, the second experiment additionally assimilates the LWP and IWP data de-
rived from ABI/GOES-16 with the new LWP and IWP operators incorporated into GSI version 3.7, which 
takes the advantages of the hydrometeor information from the model (referred as Hydro). The LWP and 
IWP are only assimilated for D02. Accounting for the 9 km grid resolution and the horizontal length scale of 
the control variable vQ , LWP and IWP are thinned by 20 km (about 2 times the grid). The observation errors 
are estimated following Desroziers et al., 2005, using both O B (observation minus background) and O A 
(observation minus analysis). In this study, the constant with the values of 300 g/m2 is assigned to both LWP 
and IWP. It is worth noting that scenario-dependent observation error assignments (e.g., defined as a func-
tion of LWP and IWP values) need to be further investigated to obtain better LWP and IWP analysis, which 
will be carried out in the future study. The quality control (QC) application in this study is the default gross 
check function in GSI, which is also used in many other studies (e.g., Gasperoni, et al., 2020; Li et al., 2020; 
T. C. Wu et al., 2019). It eliminates observations that differ from the background by more than three times 
the observation error.

In both CNTL and Hydro experiments, a total of 18 cycling analyses for Hurricane Irma (2017) from 0600 
UTC 05 September 2017, to 1800 UTC 09 September 2017, and 17 cycling analyses for Hurricane Maria 
(2017) from 1,200 UTC 18 September 2017, to 1,800 UTC 22 September 2017, are conducted with a 6-h 
spin-up run before the first analysis (Figure 5). 72-h forecasts are made after each assimilation. It should 
be noted that the LWP and IWP data are retrieved from the VIS band radiances, which are only available 
during daytime, that is, 1200 UTC and 1800 UTC.

5.2.  Verification Against the LWP and IWP Observations

To evaluate the impacts of the new LWP and IWP operators on the analyses and forecasts in the cycling 
data assimilation, the LWP and IWP data number, the mean bias, and the standard deviation (STD) of the 
model versus observations are presented in Figure 6 for Hurricane Irma (2017). It shows that the number 
of assimilated IWP data varies with time (Figure 6a) due to the effects of daytime coverage. The average 
utilization percentage of the observations is around 30%, and observations that differ significantly from 
the background field are eliminated during QC. For example, the differences between observations and 
background are larger than three times the observation error, or the background is defined as clear sky. IWP 
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Figure 5.  Flow charts of the cycling data assimilation experiments for Hurricane Irma (2017). The background field 
for each analysis is taken from the 6-h forecast of the previous cycle. The same for Hurricane Maria (2017) but with 
start time at 1200 UTC 18 September 2017 and end time at 1800 UTC 22 September 2017.
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has a higher utilization rate than LWP. This is because the simulated liquid clouds are mainly located in 
the convective area, but the LWP observations are mostly distributed in the hurricane environments, where 
it is defined as clear sky by the model. Therefore, the majority of the LWP in hurricane environments is 
eliminated. Figure 6c shows an example at 1800 UTC 06 September 2017 for Hurricane Irma (2017) that the 
LWP and IWP are assimilated or rejected. Observations in the hurricane environments and in the strong 
convective areas are both removed. It is worth noting that the rejected observations may have significant bi-
ases and differ too much from the background, and the assimilation of these products may severely damage 
the model performance.

Based on these assimilated observations, mean bias and STD are calculated. For the mean bias (Figure 6b 
solid lines), it is clear that the assimilation of the LWP and IWP data can consistently reduce the mean bias 
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Figure 6.  (a) Time series of the number of IWP and LWP observations used in assimilation (black line) and the 
utilization percentage (red line), (b) mean bias against the observed LWP and IWP (solid lines) and standard deviation 
against the observed LWP and IWP (dashed lines) before (blue lines) and after (red lines) data assimilation (DA), (c) the 
kept and refused LWP and IWP observation distribution after QC.
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with an average reduction of 1.8%, indicating that the new LWP and IWP operators effectively assimilate 
the LWP and IWP data at all analysis times. Moreover, the STD (Figure 6b dashed lines) after assimilation 
is also smaller than that before assimilation with an average reduction of 1.4%, meaning that the variations 
of the differences between the observed and the simulated LWP and IWP decrease with the assimilation of 
LWP and IWP data. As we can see, the improvement of the mean deviation and STD is small, which can be 
attributed to two reasons. First, the observations used to improve the model are limited, and the LWP and 
IWP observations in the hurricane core area are eliminated by QC; second, the background error covariance 
used here is designed for water vapor, which needs to be better characterized for hydrometeors. Although 
the improvement is small, assimilating the LWP and IWP using the new observation operators does reduce 
the bias and STD. These results are expected since when the LWP and IWP are assimilated using the new 
operators, the water vapor in the analysis field is improved, and thus, the simulated LWP and IWP from the 
model can better fit the observations.

5.3.  Verification Against the Dropsonde Soundings

The independent sounding observations obtained from the National Hurricane Operations Plan (NHOP) 
are used to verify the impact of the new LWP and IWP operators on both hurricanes analysis and fore-
cast. NHOP is published annually before the hurricane season, with the objective of providing forecasts, 
warnings, and assessments concerning tropical and subtropical weather systems for the United States and 
designated international recipients (Landsea & Franklin, 2013; OFCM 2017; Rappaport et al., 2009; Sanabia 
et al., 2013; Vonich & Hakim, 2018). The distributions of dropsonde observations are shown in Figure 7. 
The sounding observations cover the entire lifetime of Hurricane Irma (2017) and Hurricane Maria (2017).

The root means square error (RMSE) is used for the verification metrics for four variables, that is, the zonal 
(U) and meridional (V) components of wind, temperature (T), and specific humidity (Q), which is calculat-
ed by the following equation
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Figure 7.  The distribution of dropsonde soundings observations from the National Hurricane Operations Plan (NHOP) for (a) Irma case and (b) Maria case. 
The numbers in the legend are dates in September 2017.

(a) Dropsonde for Irma (b) Dropsonde for Maria
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where N represents the total observation number, obsX  is the observations obtained from NHOP, and modelX  
is the model variable that interpolated to the observation space. The calculation is performed through the 
Model Evaluation Tools (MET) developed by DTC, which matches model outputs and observations in dif-
ferent spatial and time spaces together.

Figure 8 reveals the vertical profiles of RMSE for the analysis, 12-h forecast, and 24-h forecast fields for 
Hurricane Irma (2017). There is little difference of RMSE above 500 hPa and at the sea surface between the 
two experiments, especially for U and V wind fields. The analysis field of the U wind field (Figure 8a) has 
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Figure 8.  Vertical profiles of the analysis (red lines), 12 h forecast (yellow lines), and 24 h forecast (blue lines) RMSE for Hurricane Irma (2017) of (a) U 
(m s−1), (b) V (m s−1), (c) T (k) and (d) Q (g/kg) compared with the independent dropsonde sounding observations obtained from the National Hurricane 
Operations Plan (NHOP). The right ordinates represent the total number of observations used for verification.
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a smaller RMSE below 500 hPa in the Hydro experiment, and this improvement is also evident in the 12-h 
and 24-h forecasts. For the V wind field (Figure 8b), the improvement, however, is not found at all levels, 
and only some improvements are observed above 850 hPa. This may be related to the large rejection of LWP 
observations, which mainly contribute to lower levels. For temperature (Figure 8c) and specific humidity 
(Figure 8d), the improvements are more pronounced and consistent in the Hydro experiment. Smaller RM-
SEs can be seen at the whole levels in both temperature and specific humidity analyses compared to the 
CNTL experiment. The RMSEs increase from analysis to 24-h forecast, but the RMSEs of the Hydro experi-
ment are always smaller than those of the CNTL experiment.

The vertical profiles of RMSE of Hurricane Maria (2017) are shown in Figure 9. For the wind (Figures 9a 
and 9b), assimilating LWP and IWP has slight improvements on both the low-level wind analysis. As the 
forecast proceeds, the U wind field in the Hydro experiment can maintain some of the low-level advan-
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Figure 9.  The same as Figure 8 but for Hurricane Maria (2017).
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tages in the 24-h forecast, while the advantage of the V wind field in the Hydro experiment survives for a 
shorter time. For temperature (Figure 9c), slight improvements can be found in the analysis of the Hydro 
experiment below 850 hPa, but the errors of the two experiments tend to converge after the 24-h forecast. 
Compared to the CNTL experiment, the improvement of water vapor (Figure 9d) in the Hydro experiment 
is more obvious, and the error in the Hydro experiment is smaller than that in the CNTL experiment in both 
the analysis and forecast fields.

The verifications with the dropsonde observations illustrate that the assimilation of LWP and IWP with 
the new LWP and IWP operators not only improves the water vapor initialization but can also transfer the 
positive improvements to other forecast variables through model forecasts.
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Figure 10.  The (a), (b) track, (c), (d) minimum sea-level pressure (SLP), and (e), (f) 10 m maximum wind speed (MWS) forecast RMSE for the CNTL 
experiment (blue) and the Hydro experiment (red) for (a), (c), (e) Hurricane Irma (2017) and (b), (d), (f) Hurricane Maria (2017). The minimum (maximum) 
SLP (MWS) is found based on the Geophysical Fluid Dynamics Laboratory (GFDL) vortex standard method.
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(c) (d)

(e) (f)
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5.4.  Impact on Hurricane Track and Intensity Forecasts

To assess the impact of the new LWP and IWP operators on the hurricane track and intensity forecasts, 72-h 
forecasts are made after each analysis step. The forecast RMSEs of hurricane track and intensity [charac-
terized by minimum sea-level pressure (SLP) and the 10 m maximum wind speed (MWS)] are calculated 
compared to NHC best track dataset and shown in Figure 10. For the hurricane track, the tracking errors of 
the Hydro experiment are consistently smaller than that of the CNTL experiment both for Hurricane Irma 
(2017) and Hurricane Maria (2017). The RMSEs of track errors are reduced by about 20% on average.

For intensity errors, they decrease gradually with the forecast, which may be associated with the weakening 
of the two hurricanes. The model simulates hurricane weakening better compared to hurricane intensifi-
cation, so the intensity error has a larger value at the initial time and gradually decreases as the forecast 
proceeds. Besides, the Hydro experiment gives comparable or slightly worse intensity results than the CNTL 
for both hurricanes. This should be related to the assimilated LWP and IWP data locations. Most of the 
assimilated LWP and IWP data are located around the hurricane, not in the inner core area as shown in 
Figure 6d, which helps to improve the environmental fields (Figures 8 and 9). The improved environments 
flow further leads to the hurricane track forecast improvement. However, missing the LWP and IWP data 
inside the storm benefit little to the intensity improvement for both strong hurricane cases.

To further quantify the impacts of the new LWP and IWP operators on hurricane forecasts, the improve-
ment ratios are calculated for every 6-h forecast similar to the quantification method of Wang et al. (2019), 
but taking into account both MWS and SLP as intensity metrics
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Figure 11 shows the improvement ratios for Hurricane Irma (2017) and Hurricane Maria (2017) for the 72 h 
forecast period. Overall, it is clear that the improvement ratios are positive for all forecast periods in Irma 
case and mostly positive in Maria case. Besides, the average improvement rates in Irma case for 6–24, 30–48, 
and 54–72 h gradually decreased, with the average values of 10.9%, 9.48%, and 7.35%, respectively. This indi-
cates that the assimilation of LWP and IWP improves the Hurricane Irma (2017) forecast more effectively at 
the early stage. The decreasing improvement rates may be related to the self-adjustment of the model after 
assimilation of the hydrometeors information, where the LWP and IWP information gradually disappears 
with the forecast adjustment due to the lack of the necessary thermodynamic input support. Similar im-
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Figure 11.  The improvement ratios for (a) Hurricane Irma (2017) and (b) Hurricane Maria (2017) at each forecast period.
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provement rate reduction can be found in the Maria case, with an average 
improvement rate of 5.11% in the 6–24 h and 3.45% in the 54–72 h. How-
ever, negative values of improvement rates are observed at 42 and 48 h, 
which are associated with a large intensity error at those periods.

In general, it shows that the assimilation of ABI-derived LWP and IWP 
using the new observation operator improves the forecast of Hurricanes, 
even if the intensity forecasts have slight negative contributions.

5.5.  Impact Analysis on Hurricane Irma (2017)

To further explore the impact of assimilating ABI-derived LWP and IWP 
on hurricanes, we diagnose the analysis and forecast results of two exper-
iments at 1200 UTC 08 September 2017, with the Irma case as an example.

Figure  12a shows the best track from the National Hurricane Center 
along with the 72-h track forecast from the CNTL experiment, the Hy-
dro experiment, the Global Forecast System (GFS), and HWRF starting 
at 1200 UTC on 08 September 2017. Based on the best track, Hurricane 
Irma (2017) began by moving continuously northwest west (NWW), then 
turned north northwest (NNW), before making landfall in the southwest 
of the Florida Keys. However, the CNTL experiment predicts a consistent 
northern track compared to the best track, making landfall primarily in 
southeast Florida and striking eastern Florida. Both the GFS and HWRF 
predicted hurricane landfall on the west coast of Florida, but both had an 
early northeastward fold compared to the best track. After several cycles 
of assimilation, the initial position of Hurricane Irma (2017) in the Hy-
dro experiment deviates less from the best track compared to the CNTL 
experiment. Subsequent track forecasts are highly fitting to the best track 
before the landfall, and landfall locations are also closer to observations.

The intensity forecasts vary widely in CNTL, Hydro, and operational fore-
casts. For SLP, two operational forecasts overestimated the strength of 
Irma, especially the GFS forecast with the smallest SLP of 900 hPa. The 
CNTL and Hydro experiments, on the other hand, insufficiently predict 
the intensity, especially the Hydro experiment, whose SLP prediction is 
weakest before 48 h. For MWS forecasts, the GFS performs best overall, 
while the HWRF predicts a weaker MWS up to 24 h compared to the best 
track. The CNTL and Hydro experiments are similar, with a weaker MWS 
forecast up to 54 h and a stronger one thereafter.

Since IWP dominates the strong convection, the high-level (300  hPa) 
water vapor analysis fields are compared between the CNTL and Hydro 
experiments (Figure 13). After several cycles of analysis, different struc-
tures of water vapor background fields have been obtained for the two 
experiments. Both intensity and range of the water vapor background at 
the hurricane core area in Hydro (Figure 13c) are smaller than those in 

CNTL (Figure 13a). The large water vapor ring band of Hydro is closer to the hurricane center than that of 
CNTL. After assimilation, there is no significant change in the range and intensity of water vapor in CNTL 
(Figure 13b) because of the sparse conventional observations over the sea. However, both the intensity and 
range of water vapor are considerably enhanced after the assimilation of LWP and IWP (Figure 13d). The 
enhancement of water vapor would further contribute to the prediction of the temperature and geopotential 
height fields through the latent heat release.
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Figure 12.  The Hurricane Irma (2017) forecast (a) tracks, (b) minimum 
sea-level pressure (hPa), and (c) maximum 10m wind speed (knot) of the 
CNTL experiment (blue), the Hydro experiment (red), GFS (green), and 
HWRF (yellow) start at 1200 UTC 08 September 2017 and the best track 
(black) is from the National Hurricane Center.
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The temperature and geopotential heights at 500 hPa pressure level from the forecast beginning at 1200 
UTC 08 September 2017 are plotted in Figure 14. After a 24 h forecast, the CNTL experiment (Figure 14a) 
shows a larger warm-core area, which is favorable for hurricane development. Thus, the hurricane in CNTL 
broke the northern geopotential heights early, while the geopotential height field remains continuous in 
the Hydro experiment (Figure 14b). The continuous geopotential heights field provides a barrier against the 
early northward movement of the hurricane. In the 48-h forecast field, the hurricane in the CNTL experi-
ment (Figure 14c) has made early landfall and strikes southeastern Florida. Whereas the hurricane in the 
Hydro experiment (Figure 14d) still maintains a small distance from observations and is beginning to make 
landfall in southwest Florida. In the 72-h forecast, the warm core area becomes larger in CNTL (Figure 14e), 
while it is more concentrated in the center of the hurricane in Hydro (Figure 14f). Besides, the hurricane 
position maintains closer to the observation in the Hydro experiment than that in the CNTL experiment.

Based on the above analysis of the atmospheric fields, it can be seen that the ABI-derived cloud products 
are effectively assimilated through the new LWP and IWP observation operators. The water vapor field is 
first adjusted, and the changes in water vapor, in turn, affect the prediction of temperature and geopotential 
heights fields, leading to more accurate track forecasts.
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Figure 13.  The water vapor (a), (c) background and (b), (d) analysis fields at 300 hPa of (a), (b) the CNTL experiment 
and (c), (d) the Hydro experiment at 1200 UTC 08 September 2017.
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6.  Summary
The LWP and IWP derived from the ABI onboard GOES-16 provide valuable observational information 
for hurricane initialization. However, how to effectively assimilate the LWP and IWP observations is an 
important new study topic.

In a previous study with GSI/HWRF, T. C. Wu et al. (2016) developed the SWC and LWC operators by using 
temperature, water vapor, and pressure and further derived the hydrometeors with an empirical formula. 
Their attempts successfully assimilated the cloud product observations but contained the negative hydro-
meteor simulation bias since the water vapor outputs from the model already exclude the hydrometeor 
information during the microphysical parameterization. To better describe the hydrometeors of the model, 
this study develops a pair of new LWP and IWP observation operators for the DTC-GSI data assimilation 
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Figure 14.  Temperature (shaded, unit: (k), geopotential height (contour, unit: m2/s2) at 500 hPa for (a), (b) 24h, (c), (d) 
48h, and (e), (f) 72h forecasts from (a), (c), (e) the CNTL experiment and the Hydro experiment (b), (d), (f) start at 1200 
UTC 08 September 2017. The hurricane center from best track is marked as blue at each time.
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system. The operators enable the use of the background hydrometeors information from the WRF-ARW 
model directly. Without adding extra control variables, the hydrometeors can be formulated from the water 
vapor by assuming the fixed hydrometeors proportions during the assimilation process. The simulated LWP 
and IWP can then be calculated by the vertical integration of cloud liquid/ice water content, respectively, 
while the moisture fields are modified by the assimilation of LWP and IWP data. Besides, the vertical prop-
agation of analysis increment can be achieved by the Jacobian calculation of the LWP and IWP observation 
operators, which are confirmed by the Jacobian's analysis and a set of single observation experiments.

The impact studies of the cycling data assimilation and forecast experiments for Hurricane Irma (2017) and 
Hurricane Maria (2017) show that the new LWP and IWP observation operators can not only effectively en-
able the assimilation of ABI-derived LWP and IWP to reduce the bias between the simulated and observed 
LWP and IWP observations, but also improve the analysis and forecast accuracy by transferring cloud ob-
servations information to other model forecast variables in subsequent forecasts. In these two specific hur-
ricane cases, the assimilation of LWP and IWP with new operators effectively improves hurricane forecasts 
overall by accounting for both path and intensity errors, with the improvements in track forecasts being 
more pronounced. The impact analysis shows that the assimilation of LWP and IWP improves the track 
prediction through influencing water vapor and thus influencing temperature and geopotential heights 
fields in subsequent forecasts.

This paper validates the new LWP and IWP operators based on Hurricane Irma (2017) and Hurricane Maria 
(2017). It is obvious that more convective cases should be included in future studies to generalize the valid-
ity of the new LWP and IWP operators. Finally, it needs to be pointed that while important, a more detailed 
understanding in the influence of the microphysics parameterization scheme on the new LWP and IWP op-
erators is necessary but not the primary goal of this paper. To achieve such a goal, more comprehensive ex-
periments and more detailed analyses on extreme weather events, such as severe local storms, are required.

Data Availability Statement
L1b data are from the SSEC data center (https://www.ssec.wisc.edu/datacenter/dcmain.html). The FNL 
data are obtained from NCEP (https://rda.ucar.edu/datasets/ds083.2/).
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